\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2019
Subject Name: Partial Differential Equations

Subject Code: 5SC02PDE1
Semester: 2

Date: 20/04/2019

Branch: M.Sc. (Mathematics)

Time : 02:30 To 05:30 Marks : 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Q-1 Attempt the Following questions
a. Solve $\left(D^{2}-D^{\prime}\right) z=0$.
b. Classify the region in which the equation $\left(D^{2}-3 D D^{\prime}+D^{\prime 2}\right) z=0$ is hyperbolic.
c. Find particular integral of $r-2 s+t=\sin x$.
d. Find $D D^{\prime} z$ if x and y in $z=z(x, y)$ is replaced by $u=\log x$ and $v=\log y$
e. Define: Reducible factor
f. Find order and degree of the differential equation $5 s^{2}-4 r q=x y p$.

Q-2 Attempt all questions
a. If $\left(\beta D^{\prime}+\gamma\right)^{2}$ is a factor of $F\left(D, D^{\prime}\right)$ then prove that
$e^{\frac{\gamma y}{\beta}}\left[\phi_{1}(\beta x)+y \phi_{2}(\beta x)\right]$ is a solution of $F\left(D, D^{\prime}\right) z=0$, where ϕ_{1}, ϕ_{2} are arbitrary function of single variable ξ.
b. Solve: $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\cos m x \cdot \cos n y$.
c. Find general solution of $\left(D-2 D^{\prime}-1\right)\left(D-2 D^{\prime 2}-1\right) z=0$.

OR

Q-2 Attempt all questions
a. If $\left(\alpha D+\beta D^{\prime}+\gamma\right)$ is a factor of $F\left(D, D^{\prime}\right)$ with $\alpha \neq 0$, then prove that
$e^{\frac{-\gamma}{\alpha} x} \phi(\beta x-\alpha y)$ is a solution of $F\left(D, D^{\prime}\right) z=0$, where ϕ is arbitrary function.
b. Solve the partial differential equation $\left(D^{2}+4 D D^{\prime}+4 D^{\prime 2}\right) z=\sqrt{x-2 y}$ by general method.
c. Find a partial differential equation by eliminating f and g from

$$
z=f(x-2 i y)+g(x+2 i y)
$$

Q-5 Attempt all questions
a. Derive Laplace equation in cylindrical co-ordinate.
b. Solve partial differential equation $r+4 s+t+\left(r t-s^{2}\right)=2$ by Monge's method.

OR

Attempt all questions
a. Solve partial differential equation $r+4 s+3 t=x y$ by Monge's method.
b. Solve $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0$ by the method of separation of variable and show that the solution can be put in the form of $J_{n}(m r) e^{ \pm(m z+i n \theta)}$, where m is constant and $J_{n}(m r)$ is a Bessel's function of order n.
c. Using method of separation of variable solve:

$$
u_{x}+2 u_{y}=0, u(0, y)=4 e^{-2 y}
$$

Q-6 Attempt all questions

a. State and prove Harnack's theorem.
b. Solve the following boundary value problem in the half plane $y>0$,
described by

$$
\begin{gathered}
\text { PDE: } u_{x x}+u_{y y}=0, \quad-\infty<x<\infty, y>0 \\
\text { BCs: } u(x, 0)=f(x), \quad-\infty<x<\infty \\
\text { OR }
\end{gathered}
$$

Q-6 Attempt all Questions

a. Solve interior Dirichlet problem for a function $u=u(r, \theta)$ for a circle
and show that solution is of the form $\sum_{n=0}^{\infty} r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)$ with A_{n} and B_{n} are constants.
b. Define equipotential surface and show that the family of surfaces
$\left(x^{2}+y^{2}\right)^{2}-2 a\left(x^{2}-y^{2}\right)+a^{4}=c$ can form an equipotential surface and find the general form of the corresponding potential function.
c. State Maximum principle.

