# C.U.SHAH UNIVERSITY Summer Examination-2019

## **Subject Name: Partial Differential Equations**

| Subject Code: 55 | C02PDE1          | Branch: M.Sc. (Mathematics) |            |  |
|------------------|------------------|-----------------------------|------------|--|
| Semester: 2      | Date: 20/04/2019 | Time : 02:30 To 05:30       | Marks : 70 |  |

### **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

# **SECTION – I**

| ~ .                 |    |                                                                                                                              |      |
|---------------------|----|------------------------------------------------------------------------------------------------------------------------------|------|
| Q-1                 |    | Attempt the Following questions                                                                                              | (07) |
|                     | a. | Solve $(D^2 - D')z = 0$ .                                                                                                    | (02) |
|                     | b. | Classify the region in which the equation $(D^2 - 3DD' + D'^2)z = 0$ is hyperbolic.                                          | (01) |
|                     | c. | Find particular integral of $r - 2s + t = \sin x$ .                                                                          | (01) |
|                     | d. | Find $DD'z$ if x and y in $z = z(x, y)$ is replaced by $u = \log x$ and $u = \log y$                                         | (01) |
|                     | е  | $\mathcal{V} = \log \mathcal{Y}$<br>Define: Reducible factor                                                                 | (01) |
|                     | f. | Find order and degree of the differential equation $5a^2$ $4\pi a - \pi m$                                                   | (01) |
|                     | 1. | Find order and degree of the differential equation $5s^{-} - 4rq = xyp$ .                                                    | (01) |
| Q-2                 |    | Attempt all questions                                                                                                        | (14) |
|                     | a. | If $(\beta D' + \gamma)^2$ is a factor of $F(D, D')$ then prove that                                                         | (07) |
|                     |    | $e^{\frac{\gamma y}{\beta}}[\phi_1(\beta x) + y\phi_2(\beta x)]$ is a solution of $F(D,D)z = 0$ , where $\phi_1, \phi_2$ are |      |
|                     |    | arbitrary function of single variable $ {\mathcal E}  .$                                                                     |      |
|                     | b. | Solve: $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \cos mx \cdot \cos ny$ .                     | (04) |
|                     | c. | Find general solution of $(D - 2D' - 1)(D - 2D'^2 - 1)z = 0$                                                                 | (03) |
|                     |    | OR                                                                                                                           |      |
| 0-2                 |    | Attempt all questions                                                                                                        | (14) |
| <b>V</b> - <b>7</b> | a. | If $(\alpha D + \beta D' + \gamma)$ is a factor of $F(D, D')$ with $\alpha \neq 0$ , then prove that                         | (06) |
|                     |    | $e^{\frac{r}{\alpha}x}\phi(\beta x - \alpha y)$ is a solution of $F(D, D')z = 0$ , where $\phi$ is arbitrary function.       |      |
|                     | b. | Solve the partial differential equation $(D^2 + 4DD' + 4D'^2)z = \sqrt{x - 2y}$<br>by general method.                        | (05) |
|                     | c. | Find a partial differential equation by eliminating $f$ and $g$ from                                                         | (03) |
|                     |    | Page 1 of 3                                                                                                                  |      |



|     |         | z = f(x - 2iy) + g(x + 2iy)                                                                                                                                                                                    |      |
|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Q-3 |         | Attempt all questions                                                                                                                                                                                          | (14) |
| -   | a.      | Classify and reduce to canonical form and then solve the partial                                                                                                                                               | (06) |
|     |         | differential equation $4r - t = 0$ .                                                                                                                                                                           |      |
|     | b.      | Solve: $(x^2D^2 - 2xyDD' - 3y^2D'^2 + xD - 3yD')z = x^2y\sin(logx^2)$                                                                                                                                          | (06) |
|     | c.      | Find the characteristics of $(sin^2x)r + 2\cos x s - t = 0$ .                                                                                                                                                  | (02) |
|     |         | OR                                                                                                                                                                                                             | (-)  |
| 0-3 |         | Attempt all questions                                                                                                                                                                                          | (14) |
|     | a.      | Convert the given partial differential equation in to Canonical form                                                                                                                                           | (06) |
|     |         | $\partial^2 z \rightarrow \partial^2 z$                                                                                                                                                                        |      |
|     |         | $\frac{\partial x}{\partial x^2} + y^2 \frac{\partial x}{\partial x^2} = y$ .                                                                                                                                  |      |
|     |         | OX OY                                                                                                                                                                                                          |      |
|     | b.      | Solve: $(x^2D^2 + 2xyDD' + y^2D'^2)z = (x^2 + y^2)^{\frac{1}{2}}$ .                                                                                                                                            | (04) |
|     | c.      | i) Define: complementary function and particular integral                                                                                                                                                      | (04) |
|     |         | ii) Classify the partial differential equation                                                                                                                                                                 |      |
|     |         | $xyr - (x^2 - y^2)s - xyt + py - qx - 2(x^2 - y^2) = 0.$                                                                                                                                                       |      |
|     |         |                                                                                                                                                                                                                |      |
|     |         | SECTION – II                                                                                                                                                                                                   |      |
| 0-4 |         | Attempt the Following questions                                                                                                                                                                                | (07) |
| τ.  | 0       | Derive Green's Identity                                                                                                                                                                                        | (02) |
|     | a.<br>h | The Poisson integral formula can be obtained from                                                                                                                                                              | (02) |
|     | c<br>C  | Wave equation is considered in the Dirichlet boundary value problem                                                                                                                                            | (01) |
|     |         | Determine whether the statement is true or false.                                                                                                                                                              | (01) |
|     | d.      | Write down Heat equation in Spherical Co-Ordinates system.                                                                                                                                                     | (01) |
|     | e.      | $u = (x^2 - y^2)$ is a solution of two dimensional Laplace equation.                                                                                                                                           | (01) |
|     |         | Determine whether the statement is true or false.                                                                                                                                                              | (01) |
|     | f.      | Using which method one can solve second order non linear partial                                                                                                                                               | (01) |
|     |         | differential equation?                                                                                                                                                                                         | (-)  |
|     |         |                                                                                                                                                                                                                |      |
| Q-5 |         | Attempt all questions                                                                                                                                                                                          | (14) |
| c   | a.      | Derive Laplace equation in cylindrical co-ordinate.                                                                                                                                                            | (07) |
|     | b.      | Solve partial differential equation $r + 4s + t + (rt - s^2) = 2$ by                                                                                                                                           | (07) |
|     |         | Monge's method.                                                                                                                                                                                                |      |
|     |         | OR                                                                                                                                                                                                             |      |
| Q-5 |         | Attempt all questions                                                                                                                                                                                          | (14) |
|     | a.      | Solve partial differential equation $r + 4s + 3t = xy$ by Monge's                                                                                                                                              | (05) |
|     |         | method.                                                                                                                                                                                                        |      |
|     | b.      | Solve $\partial^2 u = 1 \partial u = 1 \partial^2 u = \partial^2 u$ . Only the method of conception of                                                                                                         | (05) |
|     |         | Solve $\frac{\partial r^2}{\partial r^2} + \frac{\partial r}{\partial r} + \frac{\partial r}{r^2} + \frac{\partial r}{\partial \theta^2} + \frac{\partial r}{\partial z^2} = 0$ by the method of separation of |      |
|     |         | variable and show that the solution can be put in the form of                                                                                                                                                  |      |
|     |         | $J_n(mr)e^{\pm(mz+in\theta)}$ , where m is constant and $J_n(mr)$ is a Bessel's                                                                                                                                |      |
|     |         | function of order <i>n</i> .                                                                                                                                                                                   |      |
|     | c.      | Using method of separation of variable solve:                                                                                                                                                                  | (04) |
|     |         | $u_x + 2u_y = 0$ , $u(0,y) = 4e^{-2y}$                                                                                                                                                                         |      |
|     |         |                                                                                                                                                                                                                |      |
| Q-6 |         | Attempt all questions                                                                                                                                                                                          | (14) |
|     | a.      | State and prove Harnack's theorem.                                                                                                                                                                             | (07) |
|     | b.      | Solve the following boundary value problem in the half plane $y > 0$ ,                                                                                                                                         | (07) |
|     |         |                                                                                                                                                                                                                |      |

Page **2** of **3** 



described by

PDE: 
$$u_{xx} + u_{yy} = 0$$
,  $-\infty < x < \infty$ ,  $y > 0$   
BCs:  $u(x, 0) = f(x)$ ,  $-\infty < x < \infty$   
OR

#### Q-6 **Attempt all Questions**

(14) Solve interior Dirichlet problem for a function  $u = u(r, \theta)$  for a circle (08) a. and show that solution is of the form  $\sum_{n=0}^{\infty} r^n (A_n \cos n\theta + B_n \sin n\theta)$ with  $A_n$  and  $B_n$  are constants.

- Define equipotential surface and show that the family of surfaces  $(x^2 + y^2)^2 2a(x^2 y^2) + a^4 = c$  can form an equipotential surface b. (04) and find the general form of the corresponding potential function.
- c. State Maximum principle.

(02)

